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This toolbox includes the computation of the Butterfly sparse fast Fourier transform [3], the fast
Laplace transform [5, 4] and a fast Fourier transform for complex evaluation nodes [4]. We give a
short overview, how to use this toolbox. For readers who are not familiar with the class concept it is
recommended to study the corresponding section of the MATLAB help, labeled as Object-Oriented
Programming. The current release version XFFT 1.0 of the toolbox is available at http://sines.de.
under the GNU General Public License version 3 as published by the Free Software Foundation [1].

1 Butterfly sparse fast Fourier transform

An introduction to the butterfly sparse Fourier transform can be found in [6]. In the following, we
use the notation of [3]. For a given space dimension d ∈ N, a nonharmonic bandwidth N = 2L,

L ∈ N, a set of frequencies T̃ = {ξk ∈ [0, N ]d : k = 1, . . . ,M2}, a set of Fourier coefficients ûk ∈ C,

k = 1, . . . ,M2, and a set of evaluation nodes X̃ = {xj ∈ [0, N ]d : j = 1, . . . ,M1}, the butterfly sparse
Fourier transform computes the sums

fj := f(xj) =

M2∑
k=1

ûke2πiξkxj/N , j = 1, . . . ,M1. (1)

The sums (1) with d ≥ 2 and M1 = M2 = O(Nd−1), and sampling sets T̃ , X̃ on smooth (d − 1)-
dimensional manifolds can be computed inO(Nd−1 logN(| log ε|+logN)d+1) floating point operations,
where ε > 0 denotes the target accuracy.
The butterfly sparse Fourier transform is implemented for the dimensions d = 1, 2, 3, 4. The XFFT
class consists of the main classes @sparse FFT1D for d = 1, @sparse FFT2D for d = 2, @sparse FFT3D

for d = 3, and @sparse FFT4D for d = 4. To shorten notation, we write sparse FFT*D, where the *
can be chosen as 1,2,3,4. There are some classes called @tree1D, @tree2D, @tree3D, and @tree4D,
which generate the trees of the dyadic decompositions of the domains X and Ω, see [3, Algorithm
1]. Note that the user must not call the tree-classes by oneself. The @sparse FFT*D generates the
tree automatically in a pre-computation step. The user has to set the properties N, MX, MOmega, p,
and option given in Table 1. Here MX and MOmega are the spatial and frequency nodes X̃ and Ω̃,
respectively. Moreover, the user has to ensure that the input data fulfill the range conditions listed in
Table 1, because there is no check for wrong input data implemented. If we want to choose a higher
approximation rank p ≥ 6 we should use for option the property ’Ltb’ or ’Ltb*’, because these
variants are more stable, see [3] for details. Then we create an object of class @sparse FFT*D,

plan = sparse FFT ∗ D(MX, MOmega, p, N, option).

Afterwards we have to set the coefficient vector fhat = (f̂k)k=1,...,M2
∈ CM2×1 and can compute the

sums f := (f(xj))
M1
j=1 in (1) approximatively by applying

f = mtimes(plan, fhat).

All available properties and methods of an object can be listed with the MATLAB functions properties
and methods,

properties(obj) or methods(obj),
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and documentation is provided by the MATLAB help and doc commands, for example

help sparse FFT1D or doc sparse FFT1D.

You can find all numerical tests of [3] in the directory numerical tests/paper KuMe2012. The
numerical files and figures of [3] are listed in table 3. For each compute file exists a show file, which
plots the result of the computations. For more details see the m-Files.

Property Range Description

N N = 2L, L ∈ N domain parameter

MX [0, N ]M1×d sampling nodes X̃

MOmega [0, N ]M2×d sampling nodes Ω̃
p p ∈ N local expansion degree
option see Table 2

invG Cp×p matrix G−1, see [3, section 2.3.1.]
H Cp×p matrix H, see [3, section 2.3.1.]
Lleft Cp×p Lagrange matrix for a left son box, see [3, section 2.3.2.]
Lright Cp×p Lagrange matrix for a right son box, see [3, section 2.3.2.]
Laglast Cd(M1×p) function values of Lagrange polynomials in MX just for

option=’Ltb*’, see [3, section 2.3.2.]

Table 1: Properties of the class sparse FFT*D for each dimension d = 1, 2, 3, 4 and their default values.

option Description
’Mtb’ monomial-type basis, see [3, section 2.3.1.]
’Ltb’ Lagrange-type basis, see [3, section 2.3.2.]
’Ltb*’ Lagrange-type basis with precomputation of the Lagrange polynomials in MX.

Table 2: Possible types for the property option of the class sparse FFT.

figure file
Figure 4.1. (a), (b) box1D/compute1D relative error box

Figure 4.2. (a) box1D/show condition number G

Figure 4.2. (b) box1D/show condition number Lag

Figure 4.3. (a),(b) compute1D relative error

Figure 4.3. (c),(d) compute2D relative error

Figure 4.4. compute1D relative error dependence L

Figure 4.5. compute1D times

Figure 4.6. (a),(b) compute2D times

Figure 4.6. (c),(d) compute3D times

Figure 4.6. (e),(f) compute4D times

Table 3: Files of the numerical tests in [3].

2 Fast Fourier transform for complex evaluation nodes

Let now evaluation or spatial nodes y1 > . . . > yM1
> 0, frequency nodes ξ1 > . . . > ξM2

> 0, and coef-

ficients f̂k ∈ C for k = 1, . . . ,M2 be given. The fast Laplace transform is the approximate computation
of sums

fj := f(yj) =

M2∑
k=1

f̂ke−yjξk , j = 1, . . . ,M1 (2)
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by [4, Algorithm 1]. The XFFT class consists of the main class @XFLT, which includes the fast Laplace
transform [4, Algorithm 1], to compute (2). Furthermore, it includes [4, Algorithm 2], the Fast Fourier
transform for nonequispaced complex nodes, to compute sums of the form

fj :=

N−1∑
k=0

f̂ke2πikj/Ne−yjk, j = 0, . . . , N − 1, (FFLT)

fj :=

N∑
k=1

f̂ke2πikxj/Ne−yjk, j = 1, . . . ,M1, (NFLT)

fj :=

M2∑
k=1

f̂ke2πiξkxj/Ne−yjξk , j = 1, . . . ,M1, . ((BSFLT) or (NNFLT))

For more details, we refer the reader to [4]. The first input parameter will set the form of the transform,
(FLT), (NFLT), (BSFLT) or (NNFLT). The possible transforms are listed in Table 4.

transform, Ftype Description

’LT’ Laplace transform
’FFLT’ fast Fourier Laplace transform
’NFLT’ nonequispaced fast Fourier Laplace transform
’BSFLT’ butterfly sparse fast Fourier Laplace transform
’NNFLT’ nonequispaced fast Fourier Laplace transform in spatial and fre-

quency domain

Table 4: Possible transforms.

For each transform, the following values have to be set. First, the user has to set sampling nodes
MY= (y1, . . . , yM1

) ∈ [0,∞)M1 in ascending order. Furthermore, the user can choose between the target
accuracy ε or the approximation rank q of the Laplace transform. Finally the sampling nodes MOmega=
(ξ1, . . . , ξM2) ∈ [0,∞)M2 has to be set in ascending order, too. For the Laplace transform, you can
initialize the plan for fixed target accuracy epsilon by

plan=XFLT(’LT’,MY,’accuracy’,epsilon,’MOmega’,MOmega)

or for a fixed approximation rank q by

plan=XFLT(’LT’,MY,’rank’,q,’MOmega’,MOmega).

The computation of f = (fj)j=1,...,M1
is done by the function call

f=mtimes(plan,fhat),

where fhat = (f̂k)k=1,...,M2 . For the NFLT and NNFLT the NFFT software library is needed, see [2]
and

http://www-user.tu-chemnitz.de/~potts/nfft/.

For an arbitrary plan, the ’Ftype’ have to been choosen by possible values listed in Table 4. Moreover,
the optional input arguments varargin are listed for each transformation in Table 5. The plan can
be initialized by

plan=XFLT(Ftype,MY,option,value,varargin),

where option has to be set as ’rank’ or ’accuracy’ with the appropriate value q ∈ N or epsilon ∈ (0, 1),
respectively.

http://www-user.tu-chemnitz.de/~potts/nfft/
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Ftype Ftype Property Range Description

LT ’MOmega’ (ξ1, . . . , ξM2
)> ∈ [0, N ]M2 , frequency nodes

ξ1 < · · · < ξM2

FFLT everything is automatically
set

NFLT ’N’ N ∈ N length of the NFFT
’MX’ (x0, . . . , xN−1)> ∈ [0, N ]N spatial nodes
’libdir’ path NFFT library directory

BSFLT ’N’ N = 2L, L ∈ N domain parameter
’MX’ (x1, . . . , xM1)> ∈ [0, N ]M1 spatial nodes
’MOmega’ (ξ1, . . . , ξM2)> ∈ [0, N ]M2 , sampling nodes in frequency

domain
ξ1 < · · · < ξM2

’BSFFTrank’ p ∈ N local expansion degree

NFFLT ’N’ N = 2L, L ∈ N domain parameter
‘MX’ (x1, . . . , xM1)> ∈ [0, N ]M1 spatial nodes
’MOmega’ (ξ1, . . . , ξM2)> ∈ [0, N ]M2 , frequency nodes

ξ1 < · · · < ξM2

’libdir’ path NFFT library directory

Table 5: Properties of the class XFLT and their default values.
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