XFFT - a MATLAB toolbox for computing eXtended fast
Fourier transforms

Ines Melzer

October 21, 2015

This toolbox includes the computation of the Butterfly sparse fast Fourier transform [3], the fast
Laplace transform [5, 4] and a fast Fourier transform for complex evaluation nodes [1]. We give a
short overview, how to use this toolbox. For readers who are not familiar with the class concept it is
recommended to study the corresponding section of the MATLAB help, labeled as Object-Oriented
Programming. The current release version XFFT 1.0 of the toolbox is available at http://sines.de.
under the GNU General Public License version 3 as published by the Free Software Foundation [1].

1 Butterfly sparse fast Fourier transform

An introduction to the butterfly sparse Fourier transform can be found in [6]. In the following, we
use the notation of [3]. For a given space dimension d € N, a nonharmonic bandwidth N = 2&
L € N, a set of frequencies T = {&, € [0,N]? : k =1,..., My}, a set of Fourier coefficients i, € C,
k=1,...,M>, and a set of evaluation nodes X = {x; € [0,N]?:j =1,..., M}, the butterfly sparse
Fourier transform computes the sums

Mo
fi=flmy) =Y age?™ =N =1 M. (1)
k=1

The sums (1) with d > 2 and M; = M, = O(N%1), and sampling sets 7, X on smooth (d — 1)-
dimensional manifolds can be computed in O(N9~!log N (| log £|+log N)4*+1) floating point operations,
where € > 0 denotes the target accuracy.

The butterfly sparse Fourier transform is implemented for the dimensions d = 1,2,3,4. The XFFT
class consists of the main classes @sparse_FFT1D for d = 1, @sparse_FFT2D for d = 2, @sparse_FFT3D
for d = 3, and @sparse _FFT4D for d = 4. To shorten notation, we write sparse FFT*D, where the *
can be chosen as 1,2,3,4. There are some classes called @treelD, @tree2D, @tree3D, and Q@tree4D,
which generate the trees of the dyadic decompositions of the domains X and €, see [3, Algorithm
1]. Note that the user must not call the tree-classes by oneself. The @sparse FFT*D generates the
tree automatically in a pre-computation step. The user has to set the properties N, MX, MOmega, p,
and option given in Table 1. Here MX and MOmega are the spatial and frequency nodes X and €,
respectively. Moreover, the user has to ensure that the input data fulfill the range conditions listed in
Table 1, because there is no check for wrong input data implemented. If we want to choose a higher
approximation rank p > 6 we should use for option the property ’Ltb’ or ’Ltb*’, because these
variants are more stable, see [3] for details. Then we create an object of class @sparse FFT*D,

plan = sparse FFT x D(MX, MOmega, p, N, option).

Afterwards we have to set the coefficient vector fhat = (fk)k:17,,_,M2 € CM2X1 and can compute the
sums f := (f(znc]))j\/[:l1 in (1) approximatively by applying

f = mtimes(plan, fhat).
All available properties and methods of an object can be listed with the MATLAB functions properties
and methods,

properties(obj) or methods(obj),

http://sines.de

and documentation is provided by the MATLAB help and doc commands, for example

help sparse FFT1D or

doc sparse_FFT1D.

You can find all numerical tests of [3] in the directory numerical tests/paper KuMe2012. The
numerical files and figures of [3] are listed in table 3. For each compute file exists a show file, which
plots the result of the computations. For more details see the m-Files.

Property | Range Description

N N =2F L € N | domain parameter

MX [0, N]Mixd sampling nodes X

MOmega [0, N]M2xd sampling nodes €2

) peEN local expansion degree

option see Table 2

invG Ccrxr matrix G, see [3, section 2.3.1.]

H Cpxp matrix H, see [3, section 2.3.1.]

Lleft Ccrxp Lagrange matrix for a left son box, see [3, section 2.3.2.]

Lright Crxp Lagrange matrix for a right son box, see [3, section 2.3.2.]

Laglast C4(Maxp) function values of Lagrange polynomials in MX just for
option=’Ltb*’, see [3, section 2.3.2.]

Table 1: Properties of the class sparse_FFT+*D for each dimension d = 1,2, 3,4 and their default values.

option | Description

’Mtb’
’Ltb’

’Ltb*’

monomial-type basis, see [3, section 2.3.1.]
Lagrange-type basis, see [3, section 2.3.2.]
Lagrange-type basis with precomputation of the Lagrange polynomials in MX.

Table 2: Possible types for the property option of the class sparse _FFT.

figure file

Figure 4.1. (a), (b) | box1D/computelD _relative_error_box
Figure 4.2. (a) box1D/show_condition number_G
Figure 4.2. (b) box1D/show_condition number _Lag
Figure 4.3. (a),(b) | computelD_relative_error

Figure 4.3. (c¢),(d) | compute2D_relative_error

Figure 4.4. computelD_relative_error_dependence_L
Figure 4.5. computelD_times

Figure 4.6. (a),(b) | compute2D_times

Figure 4.6. (¢),(d) | compute3D_times

Figure 4.6. (e),(f) | compute4D_times

Table 3: Files of the numerical tests in [3].

2 Fast Fourier transform for complex evaluation nodes

Let now evaluation or spatial nodes y1 > ... >y, > 0, frequency nodes £, > ... > &py, > 0, and coef-

ficients fk € Cfork=1,..., Ms be given. The fast Laplace transform is the approximate computation

of sums

Mo

fi=Fly) =D fre %%, j=1,...,M (2)
k=1

2 FAST FOURIER TRANSFORM FOR COMPLEX EVALUATION NODES 3

by [4, Algorithm 1]. The XFFT class consists of the main class @XFLT, which includes the fast Laplace
transform [4, Algorithm 1], to compute (2). Furthermore, it includes [4, Algorithm 2], the Fast Fourier
transform for nonequispaced complex nodes, to compute sums of the form

N-1
fi=Y_ fue?™kI/Nemuik i =0, .. N -1, (FFLT)
k=0
N
fi=Y fre?mkmaNemvik =1 M, (NFLT)
k=1
Mo
fio= fre®memNemvite =1 My, ((BSFLT) or (NNFLT))
k=1
For more details, we refer the reader to [1]. The first input parameter will set the form of the transform,

(FLT), (NFLT), (BSFLT) or (NNFLT). The possible transforms are listed in Table 4.

transform, Ftype | Description

LT Laplace transform

’FFLT’ fast Fourier Laplace transform

’NFLT’ nonequispaced fast Fourier Laplace transform

’BSFLT’ butterfly sparse fast Fourier Laplace transform

’NNFLT’ nonequispaced fast Fourier Laplace transform in spatial and fre-

quency domain

Table 4: Possible transforms.

For each transform, the following values have to be set. First, the user has to set sampling nodes

MY= (y1,...,yar,) € [0,00)" in ascending order. Furthermore, the user can choose between the target
accuracy € or the approximation rank q of the Laplace transform. Finally the sampling nodes MOmega=
(&1,...,&n,) € [0,00)M2 has to be set in ascending order, too. For the Laplace transform, you can

initialize the plan for fixed target accuracy epsilon by
plan=XFLT(’LT’,MY, ’accuracy’,epsilon, ’MOmega’ ,MOmega)

or for a fixed approximation rank q by
plan=XFLT(’LT’ ,MY, ’rank’,q, ’MOmega’ ,MOmega) .

The computation of f = (f;);=1,... a, is done by the function call
f=mtimes(plan,fhat),

where fhat = (f)r=1
and

M, For the NFLT and NNFLT the NFFT software library is needed, see [2]

yeeey

http://www-user.tu-chemnitz.de/~potts/nfft/.
For an arbitrary plan, the *Ftype’ have to been choosen by possible values listed in Table 4. Moreover,
the optional input arguments varargin are listed for each transformation in Table 5. The plan can
be initialized by

plan=XFLT (Ftype,MY,option,value,varargin),

where option has to be set as *rank’ or >accuracy’ with the appropriate value q € Nor epsilon € (0, 1),
respectively.

http://www-user.tu-chemnitz.de/~potts/nfft/

Ftype Ftype | Property Range Description
LT ’MOmega’ (&1,... &) " €10, N]M2 | frequency nodes
&G < - <&m
FFLT everything is automatically
set
NFLT ’N? NeN length of the NFFT
’MX? (z0,...,xn_1)" €0, N]N | spatial nodes
’1ibdir’ path NFFT library directory
BSFLT ’N’ N=2L LeN domain parameter
"MX° (z1,...,2a7,) " €[0, NJ*t | spatial nodes
’MOmega’ (&1,...,6m,) " €0, N]M2 | sampling nodes in frequency
domain
&1 < <&
’BSFFTrank’ | pe N local expansion degree
NFFLT ’N’ N=2L LeN domain parameter
‘MX° (w1,...,20,)" € [0, N]JM1 | spatial nodes
’MOmega’ (&1,... &) " €10, N]M2 | frequency nodes
&1 < <&mp
’libdir’ path NFFT library directory

Table 5: Properties of the class XFLT and their default values.

REFERENCES)

References

[1] Free Software Foundation. GNU General Public License version 3 (GPLv3). http://www.gnu.
org/licenses/, 6 2007.

[2] J. Keiner, S. Kunis, and D. Potts. Using NFFT 3—a software library for various nonequispaced
fast Fourier transforms. ACM Trans. Math. Software, 36(4):Art. 19, 30, 2009.

[3] S.Kunis and I. Melzer. A stable and accurate butterfly sparse Fourier transform. SIAM J. Numer.
Anal., 50(3):1777-1800, 2012.

[4] S. Kunis and I. Melzer. Fast evaluation of real and complex exponential sums. Preprint, 2014.

[5] V. Rokhlin. A fast algorithm for the discrete Laplace transformation. J. Complexity, 4(1):12-32,
1988.

[6] L. Ying. Sparse Fourier transform via butterfly algorithm. SIAM J. Sci. Comput., 31(3):1678—
1694, 20009.

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

	Butterfly sparse fast Fourier transform
	Fast Fourier transform for complex evaluation nodes

