Butterfly Sparse Fast Fourier Transform

Stefan Kunis and Ines Melzer - School of Mathematics/Computer Science, Osnabrück University

iven:

- dimension $d \in \mathbb{N}$
- spatial domain $X=[0, N]^{d}, N=2^{L}, L \in \mathbb{N}$
frequency domain $T=[0, N]^{d}$
- sampling nodes on $d-1$ dimensional smooth manifolds

$$
\widetilde{X}:=\left\{\mathbf{x}_{i} \in X: i=1, \ldots, M_{1}\right\}, \quad \widetilde{T}:=\left\{\boldsymbol{\xi}_{j} \in T: j=1, \ldots, M_{2}\right\},
$$

Example for sampling nodes on a cylinder or on a cone in the 3-dimensional case.
-Fourier coefficients

$$
\hat{f}_{j} \in \mathbb{C}, \quad j=1, \ldots, M_{2}
$$

task: Compute

$$
\begin{equation*}
f(\mathbf{x})=\sum_{j=1}^{M_{2}} \hat{f}_{j} \mathrm{e}^{2 \pi \mathbf{i} \boldsymbol{\xi}_{j} \cdot \mathbf{x} / N}, \quad \mathbf{x} \in \widetilde{X} \tag{1}
\end{equation*}
$$

- $\mathcal{O}\left(M_{1} M_{2}\right)$ arithmetic operations

2. Lowrank approximation

Theorem 1. Let $N, p \in \mathbb{N}, p \geq 5$, and let $T, X \subset[0, N]^{d}$ fulfill the admissibility condition

$$
\operatorname{diam}(T) \operatorname{diam}(X) \leq N
$$

Moreover, let the function $g(x)=\sum_{\xi \in T^{\prime}} \hat{g}_{k} \mathrm{e}^{2 \pi \mathrm{i} \xi \mathrm{x} / N}, T^{\prime} \subset T$, be approximated by using p^{d} points $T_{p} \subset T$ on a regular tensor product grid. The interpolation $I_{p}^{X T} g\left(\mathbf{x}_{\mathbf{s}}\right)=g\left(\mathbf{x}_{\mathbf{s}}\right)$ at p^{d} nodes $\mathbf{x}_{\mathbf{s}} \in X$ on the Chebyshev tensor product grid then yields

$$
\left\|g-I_{p}^{X T} g\right\|_{C(X)} \leq \frac{\left(1+C_{p}\right)\left(C_{p}^{d}-1\right)}{C_{p}-1} \cdot c_{p} \cdot\|\hat{\mathbf{g}}\|_{1}
$$

with $c_{p}:=\frac{1}{\pi p}\left(\frac{\pi}{p-1}\right)^{p}, \quad C_{p}:=\sqrt{K_{p}}\left(1+\frac{2}{\pi} \log p\right), \quad \frac{\pi^{4}}{16} \geq K_{p} \searrow 1$.

$$
X_{l, m}=\left[N / 2^{l} m, N / 2^{l}(m+1)\right) \quad \text { for } m=0, \ldots, 2^{l}-1,
$$

$$
0, \ldots, L \text { and locations } m, n \text {, form two binary trees. }
$$

4. Butterfly Scheme

Admissible pairs $X \times T$ form a butterfly graph.

5. Algorithm

The butterfly scheme traverses the graph top down. Starting locally over T, we build approximations from its two predecessors, include more frequencies and restrict to smaller X-boxes.
Algorithm (BSFFT).

1. exact functions, local in frequency- and global in spatial domain

$$
f^{T_{L, n}}(x):=\sum_{\xi_{j} \in T_{L, n} \cap \widetilde{T}} \hat{f}_{j} \mathrm{e}^{2 \pi \mathrm{i} \xi_{j} x / N}, \quad n=0, \ldots, 2^{L}-1
$$

level $\ell=0$:

$$
f_{p}^{X \times T_{L, n}}:=I_{p}^{X T_{L, n}} f^{T_{L, n}}, \quad n=0, \ldots, 2^{L}-1
$$

2. level $\ell=1, \ldots, L$

$$
f_{p}^{X_{\ell, m} T_{L-\ell, n}}:=I_{p}^{X_{\ell, m} T_{L-\ell, n}}\left[f_{p}^{X_{\ell-1,\lfloor m / 2]} \times T_{L-\ell+1,2 n}}+f_{p}^{X_{\ell-1, \mid m / 2]} \times T_{L-\ell+1,2 n+1}}\right]
$$

for $m=0, \ldots, 2^{\ell}-1$ and $n=0, \ldots, 2^{L-\ell}-1$
3. finally

$$
\tilde{f}_{p}(x)=f_{p}^{X_{L, m} T}(x) \text { for } x \in X_{L, m}, \quad m=0, \ldots, 2^{L}-1
$$

is an approximation to f in $X_{L, m}$

6. Error Analysis

Theorem 2. Let $L, p \in \mathbb{N}, N=2^{L}, T, X \subset[0, N]^{d}, \varepsilon \in(0,1]$, and $p \geq C \log L / \varepsilon$. The butterfly approximation \tilde{f}_{p} fulfills $\left\|f-\tilde{f}_{p}\right\|_{\infty} \leq \varepsilon\|\hat{\mathbf{f}}\|_{1}$. In particular, the computation of (1) takes $\mathcal{O}\left(N^{d-1}(\log N)^{d+2}\right)$ floating point operations for fixed target accuracy.

: relative error ε for $d=1$ in
dependence on p

cputime in s for $d=3$ for fixed
$p=8$ in dependence on N

7. Outlook

Can we compute sums of the form

$$
f(z):=\sum_{k=1}^{M_{2}} \hat{f}_{k} \mathrm{e}^{2 \pi \mathrm{i} \xi_{k} z / N},
$$

where $\xi_{k} \in T$ and $z \in X \times \mathrm{i} Y, Y \subset \mathbb{R}_{+}$fast?
First idea. Factorize $\mathrm{e}^{2 \pi i \xi_{k} z / N}=\mathrm{e}^{2 \pi i \xi_{k} x / N} \mathrm{e}^{-2 \pi \xi_{k} y / N}$ and use a combination of the BSFFT and the Fast Laplace transform, [3]. The main idea of the Laplace transform is the low rank approximation of the exponential kernel $\kappa: Y \times \Omega \rightarrow \mathbb{R}, \kappa(y, \xi)=\mathrm{e}^{-y \xi}$, by interpolation in Chebyshev nodes.

Theorem 3. Let $p \in \mathbb{N}, p \geq 2$, and $Y, \Omega \subset \mathbb{R}_{+}$be admissible in the sense, that $\operatorname{diam} Y \leq \operatorname{dist}(0, Y)$ and $\operatorname{diam} \Omega \leq \operatorname{dist}(0, \Omega)$ is fullfilled. The usual interpolation of κ in Chebyshev-nodes y_{s}^{Y} in Y and ξ_{r}^{Ω} in Ω is defined by

$$
\left(\mathcal{I}_{p}^{Y} \otimes \mathcal{I}_{p}^{\Omega}\right) \kappa(y, \xi):=\sum_{s=0}^{p-1} L_{s}^{Y}(y) \sum_{r=0}^{p-1} L_{r}^{\Omega}(\xi) \kappa\left(y_{s}^{Y}, \xi_{r}^{\Omega}\right)
$$

where L_{s}^{Y} and L_{r}^{Ω} are the appropriate Lagrange polynomials. It yields

$$
\left\|\left(\mathcal{I}_{p}^{Y} \otimes \mathcal{I}_{p}^{\Omega}\right) \kappa-\kappa\right\|_{C(Y \times \Omega)} \leq \frac{4^{-p}}{\sqrt{2 \pi p}}\left(2+\frac{2}{\pi} \log p\right)
$$

For admissible boxes Y and Ω the approximation of the sum

$$
u\left(x_{j}, y_{j}\right):=\sum_{k=1}^{n} \hat{f}_{k} \mathrm{e}^{2 \pi \mathrm{i} x_{j} \xi_{k} / N} \kappa\left(y_{j}, \xi_{k}\right) \approx \sum_{k=1}^{n} \hat{f}_{k} \mathrm{e}^{2 \pi \mathrm{i} x_{j} \xi_{k} / N}\left(\mathcal{I}_{p}^{Y} \otimes \mathcal{I}_{p}^{\Omega}\right) \kappa\left(y_{j}, \xi_{k}\right)
$$

leads to

$$
u\left(x_{j}, y_{j}\right) \approx \sum_{s=0}^{p-1} L_{s}^{Y}\left(y_{j}\right) \sum_{k=1}^{n} \hat{g}_{k} \mathrm{e}^{2 \pi i x_{j} \xi_{k} / N}
$$

with coefficients $\hat{g}_{k}:=\hat{f}_{k} \sum_{r=0}^{p-1} L_{r}^{\Omega}\left(\xi_{k}\right) \kappa\left(y_{s}^{Y}, \xi_{r}^{\Omega}\right)$. The inner sum can be computed approximatively by the BSFFT.

8. References

[1] S. Kunis and I. Melzer
BSFFT, Matlab toolbox for computing the butterfly sparse fast Fourier transform
http://www.analysis.uos.de/software/, 2012.
[2] S. Kunis and I. Melzer.
A stable and accurate butterfly sparse Fourier transform. SIAM J. Numer. Anal., 50(3):1777-1800, 2012
[3] V. Rokhlin
A fast algorithm for the discrete Laplace transformation.
J. Complexity, 4(1):12-32, 1988.
[4] L. Ying.
Sparse Fourier transform via butterfly algorithm.
SIAM J. Sci. Comput., 31(3):1678-1694, 2009.

