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Abstract. Recently, the butterfly approximation scheme and hierarchical approximations have been proposed
for the efficient computation of integral transforms with oscillatory and with asymptotically smooth kernels. Com-
bining both approaches, we propose a certain fast Fourier-Laplace transform, which in particular allows for the fast
evaluation of polynomials at nodes in the complex unit disk. All theoretical results are illustrated by numerical
experiments.
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1. Introduction. The fast Fourier transform (FFT) [9, 10, 13] belongs to the algorithms
with large impact on science and engineering. Generalizations have been given for noneq-
uispaced nodes, see [20, 2, 27, 8, 19, 21] for the recently suggested butterfly schemes and
[11, 6, 23, 12, 18] together with its references for some wider survey on gridding type ap-
proximations. Moreover, structured low rank approximations for integral transforms with
smooth kernels have been developed as fast multipole methods [15, 25, 28] and hierarchical
matrices [16, 3, 14, 4, 17]. One particular instance of a structured low rank approximation
for a smooth kernel is given in [22] for a discrete Laplace transform. In all cases, the con-
cept in such schemes is to trade exactness for efficiency; instead of precise computations up
to machine precision, the proposed methods guarantee a given target accuracy. Neglecting
logarithmic factors in the problem size and the target accuracy, the computational complexity
of all these algorithms scales linear in the problems size.

Discrete Laplace transforms have been developed in [22, 24] based on polynomial in-
terpolation and on approximations with Laguerre polynomials, respectively. In the first part
of this paper, we present a matrix form of [22] and develop a generalization to more general
kernel functions and a small improvement in the error estimate. The main contribution of
the paper is a combination of the discrete Laplace transform and a generalized fast Fourier
transform (FFT), where we use the decomposition of the Laplace transform explicitly and a
small number of generalized FFTs as black box. In particular, this allows for the fast eval-
uation of a polynomial, given by its monomial coefficients, at many nodes in the complex
unit disk. Alternatively, we might interpret this as an FFT with nonequispaced nodes in the
upper half plane. For notational convenience, all ideas are presented for one space dimension
but can be generalized in a straightforward manner to the multivariate case. Finally, the the-
oretical results on accuracy and computational complexity are illustrated by some numerical
experiments.

2. Preliminaries. Let q ∈ N and the nodes tj = cos 2j+1
2q π, j = 0, . . . , q − 1, be

the zeros of the q-th Chebyshev polynomial of the first kind. Moreover, let A := [a, b],
a < b, be an interval with diameter diamA := b − a, midpoint cA := a+b

2 , and Chebyshev
nodes yAj := cA + diamA

2 tj , j = 0, . . . , q − 1. The corresponding Lagrange polynomials
LAr : A→ R, r = 0, . . . , q − 1, are

LAr (y) :=

q−1∏
j=0
j 6=r

y − yAj
yAr − yAj

=

λr
y−yAr∑q−1
s=0

λs
y−yAs

, λr := (−1)r sin

(
2r + 1

2q
π

)
,
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where the second identity is called barycentric formula and allows for a stable evaluation,
cf. [5]. We define the interpolation operator IAq : C(A)→ C(A),

IAq g :=

q−1∑
j=0

g(yAj )LAj ,

which fulfills

‖g − IAq g‖C(A) ≤
diam(A)q

22q−1q!
‖g(q)‖C(A), if g ∈ C(q)(A), (2.1)

‖IAq ‖ := sup
‖g‖C(A)=1

‖IAq g‖C(A) ≤ 1 +
2

π
log q. (2.2)

Now let A,B ⊂ R be two intervals and κ : A×B → R, then we define the interpolation
in both variables by

IA×Bq := IAq ⊗ IBq , IA×Bq κ(y, ξ) :=

q−1∑
s=0

q−1∑
r=0

LAs (y)κ(yAs , ξ
B
r )LBr (ξ),

where ξBr denote the Chebyshev nodes in the interval B. We note in passing that IAq ⊗IBq =

(IAq ⊗ I)(I ⊗ IBq ), where I denotes the identity, and ‖IAq ⊗ I‖ ≤ 1 + 2
π log q.

3. Rokhlin’s discrete Laplace transform and a generalization. We generalize and
slightly improve [22] to a method computing

f(yi) =

N∑
j=1

f̂jκ(yi, ξj), i = 1, . . . , N, (3.1)

for specific kernels κ, given N ∈ N, y1 > . . . > yN > 0, ξ1 > . . . > ξN > 0, and f̂k ∈ C.
Adopting the terms from the hierarchical matrices literature, see e.g. [4, 17], a func-

tion κ : (0,∞)× (0,∞)→ R is said to be asymptotically smooth if there exist constants
C, µ, s ≥ 0, ν ∈ R such that for all q ∈ N the conditions∣∣yq∂qyκ(y, ξ)

∣∣ ≤ Cq!µqqν(yξ)−s and
∣∣∣ξq∂qξκ(y, ξ)

∣∣∣ ≤ Cq!µqqν(yξ)−s

are fulfilled for all y, ξ ∈ (0,∞). The parameter s characterizes the singularity of the kernel
for yξ = 0. Moreover, we call two intervals A,B ⊂ [0,∞) admissible if

diam(A) ≤ dist(A, 0) and diam(B) ≤ dist(B, 0).

THEOREM 3.1. Let q ∈ N, q ≥ 2, A,B ⊂ (0,∞) be admissible, and κ : A×B → R be
asymptotically smooth with constants C, µ, s ≥ 0 and ν ∈ R, then we have∥∥κ− IA×Bq κ

∥∥
C(A×B)

≤ Cµqqν

22q−1

(
2 +

2

π
log q

)
(dist(A, 0) dist(B, 0))

−s
.

Proof. For fixed ξ ∈ B and g : A → R, g(y) := κ(y, ξ), we apply the error formula
(2.1) and obtain

‖g − IAq g‖C(A) ≤
diam(A)q

22q−1q!
‖g(q)‖C(A).
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The asymptotic smoothness and the admissibility implies∣∣∣g(q)(y)
∣∣∣ ≤ Cq!µqqνy−q(yξ)−s ≤ Cq!µqqν(dist(A, 0))−q(yξ)−s

and in conclusion

‖g − IAq g‖C(A) ≤ Cµqqν21−2q sup
y∈A,ξ∈B

|(yξ)−s|.

The same estimate holds true with respect to ξ ∈ B. From this and together with the bound
(2.2), we conclude∥∥κ− IA×Bq κ

∥∥
C(A×B)

≤
∥∥κ− (IAq ⊗ I)κ∥∥C(A×B)

+
∥∥IAq ⊗ I∥∥∥∥κ− (I ⊗ IBq )κ∥∥C(A×B)

≤ Cµqqν

22q−1

(
2 +

2

π
log q

)
sup

y∈A,ξ∈B
|(yξ)−s|.

The conditions yξ ≥ dist(A, 0) dist(B, 0) and s ≥ 0 imply the assertion.
We start with the discrete Laplace transform from [22], i.e., κ(y, ξ) = e−ξy . In matrix

form, the computation of (3.1) reads as

f := Kf̂ with K := (κ(yj , ξk))j,k=1,...,N and f̂ :=
(
f̂j

)
j=1,...,N

. (3.2)

Algorithm 1 finally computes an approximation f̃ ≈ f , precisely defined in Equation (A.2)
and we refer the reader to Theorem A.3 for a shortened and slightly improved error estimate
[22]. Subsequently, we focus on the matrix partitioning of K into blocks of approximate
low rank and the derivation of the computational costs of Algorithm 1. This will allow for
the generalization to other kernels in the end of this section and for an application when
evaluating polynomials in the unit disk in Section 4.

DEFINITION 3.2. For given target accuracy ε > 0 and interval lengths y1, ξ1 > 0, we
define

q := d1
2

+ log4 1/εe, M :=

⌈
log2

y1ξ1
ε

⌉
+ 1,

`m := max(1, blog2(y1ξ1)−m− log2(log 1/ε)c+ 1), Lm := M −m,

form = 1, . . . ,M−1 and set up the geometric partitioning, see Figure 3.1 for an illustration,

Y := [0, y1], YM :=
[
0,

y1

2M−1

]
, Ym :=

( y1

2m
,
y1

2m−1

]
,

Ω := [0, ξ1], ΩM :=

[
0,

ξ1
2M−1

]
, Ωm :=

(
ξ1
2m

,
ξ1

2m−1

]
.

For ease of notation in Algorithm 1, we moreover define

LΩl :=
(
LΩl
r (ξj)

)
ξj∈Ωl,r=0,...,q−1

, LYm :=
(
LYms (yi)

)
yi∈Ym,s=0,...,q−1

,

f̂
Ωl

:=
(
f̂j

)
ξj∈Ωl

, KYm,Ωl :=
(
κ(yYms , ξΩl

r )
)q−1,q−1

s,r=0
,

for m, l = 1, . . . ,M − 1.
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FIG. 3.1. Decomposition of Y = [0, y1] for M = 4.

Regarding the computational costs, we first note that the computation of gm in Algo-
rithm 1 by means of a cumulative summation takes O(N) operations. The spatial partitions
in Definition 3.2 yield a partition of the matrix K into admissible blocks. Considering only
the case when the kernel is approximated by interpolation, Algorithm 1 factors out row- and
column bases by

K̃ =

(
LYmKYm,Ω`

(
LΩ`

)>)M−1,Lm

m=1,`=`m

= diag(LY1 , . . . ,LYM−1)
(
KYm,Ω`

)M−1,Lm

m=1,`=`m
diag(LΩ`m , . . . ,LΩLm )>

Clearly, the application of the rightmost block diagonal matrix takes at most
∑Lm
`=`m

q|Ω`| ≤
qN operations. The second matrix has at most Lm − `m ≤ 2 log(1/ε) blocks in its m-th
block row, in total its application takes O(Mq2 log 1

ε ) operations and the multiplication with
the left block diagonal matrix again takes at most qN operations. Finally note that we neglect
the precomputation of the necessary matrices LΩ` , LYm , and KYm,Ω` . In total, Algorithm 1
takes

O
(
N log

1

ε
+ log3 1

ε
log

y1ξ1
ε

)
floating point operations.

This discrete Laplace transform can be generalized to asymptotically smooth kernels.
The slightly modified versions of Algorithm 1 and Theorem A.3 read as follows.

THEOREM 3.3. Let κ : (0,∞) × (0,∞) → R asymptotically smooth with constants
ν ∈ R, s ≥ 0 and µ ∈ (0, 4). Furthermore, let ε > 0, y1, ξ1 > 0 be fixed for all N ∈ N, and
the nodes y1 > y2 > . . . > yN > 0, ξ1 > ξ2 > . . . > ξN > 0 be quasi-uniformly such that
the intervals [0, y1/N ] and [0, ξ1/N ] contain only a constant number of nodes for all N ∈ N,

respectively. We set M :=
⌈
log2

y1ξ1N
ε

⌉
+ 1 and q ∈ O( logN

ε ) and define the approximation

f̃ : Y → C,

f̃(y) :=

{
f(y) y ∈ YM ,∑M−1
`=1

∑
ξj∈Ω`

f̂jIYm×Ω`κ(y, ξj) +
∑
ξk∈ΩM

f̂kκ(y, ξk) y ∈ Ym, 1 ≤ m < M.

Then the error estimate ‖f−f̃‖∞ ≤ ε‖f̂‖1is fulfilled and the modified Algorithm 1 computes
this approximation in O(N log N

ε + log4 N
ε )floating point operations.

Proof. For µ ∈ (0, 4), C < 0, and ν ∈ R, there exist constants C̃ > 0 and µ
4 < c < 1,

such that

2C
(µ

4

)q
qµ
(

2 +
2

π
log q

)
≤ C̃cq

holds true for all q ∈ N. Theorem 3.1 implies for A,B ⊂ (0,∞) a local approximation

‖κ− IA×Bq κ‖C(A×B) ≤ C̃cq(dist(A, 0) dist(B, 0))−s. (3.3)
4



Algorithm 1 Laplace transform
Input :
ε ∈ (0, 1) . target accuracy
N ∈ N . number of sampling nodes
ξ1 > ξ2 · · · > ξN > 0 . nodes in frequency domain
y1 > y2 > · · · > yN > 0 . nodes in spatial domain
f̂ ∈ CN . Fourier coefficients

Output :
f̃ ∈ CN , f̃ ≈Kf̂ . samples in spatial domain

gM =
∑
ξj∈ΩM

f̂j
for m = M − 1, . . . , 1 do

gm = gm+1 +
∑
ξj∈Ωm

f̂j
end for

f̃
YM

= g1

for ` = 1, . . . ,M − 1 do

vΩ` =
(
LΩ`

)>
f̂

Ω`

end for

for m = 1, . . . ,M − 1 do
hYm =

∑Lm
`=`m

KYm,Ω`vΩ`

f̃
Ym

= LYmhYm + gLm+11
end for

Let now A := Ym and B := Ω` with m, ` 6= M be given. Since M − 1 ≤ log2
y1ξ1N
ε + 1

2 , it
follows

dist(A, 0) dist(B, 0) ≥ y1

2M−1

ξ1
2M−1

≥ ε2

2y1ξ1N2
. (3.4)

Applying q ≥ 1
| log c| log

(
C̃ε2s+1

(2y1ξ1)sN2s)

)
implies

∥∥κ− IA×Bq κ
∥∥
C(A×B)

≤ C̃(2y1ξ1)s
(
N

ε

)2s

cq ≤ ε.

Finally, M ∈ O(log N
ε ) leads to a constant number (O(ε)) of nodes in the near fields

YM and ΩM where we apply direct computations. Of course the approximations of the kernel
by either zero or one as in Lemma A.2 cannot be done in general and thus we let run ` =
1, . . . ,M − 1 in Algorithm 1. Since q ∈ O(log N

ε ), Algorithm 1 now takes O(N log N
ε +

log4 N
ε ) floating point operations.

EXAMPLE 3.4. Let the modified Bessel function of the second kind Kη : (0,∞)→ R,

Kη(x) :=

∫ ∞
0

e−x cosh(t) cosh(ηt)dt,

be given, set η = 1
2 , and consider the kernel κ : (0,∞)× (0,∞)→ R,

κ(y, ξ) := K 1
2
(yξ) =

√
π

2yξ
e−yξ
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which possesses a singularity for yξ = 0. Induction on q ∈ N0 shows the identity

∂q

∂yq
κ(y, ξ) =

√
π

2
(−ξ)qe−yξ

q∑
k=0

(
q

k

)∏k−1
j=0 (2j + 1)

2k
(yξ)−(2k+1)/2,

from which the asymptotic smoothness∣∣∣∣ ∂q∂yq κ(y, ξ)

∣∣∣∣ ≤√ π

2yξ
ξqe−yξ

q∑
k=0

(
q

k

)
k!(yξ)−k ≤

√
π

2
q!(yξ)−

1
2 y−q

with constants C =
√

π
2 , µ = 1, ν = 0, and s = 1

2 follows. Theorem 3.1 implies the
corresponding local error estimate and thus C̃ = 2π and c = 1

3 can be chosen in (3.3).

4. Evaluation of polynomials in the unit disk. We are interested in evaluating the
generalized polynomials f : C→ C,

f(z) =

N∑
k=1

f̂kz
ξk (4.1)

at nodes zj ∈ Z := {z ∈ C : |z| ≤ 1}, j = 1, . . . , N , and for exponents ξk ∈ [1, N ], N ∈ N,
where we exclude the nonpositive real axis zj ≤ 0 for noninteger exponents ξk.

The main idea now consists in a combination of the discrete Laplace and a nonequispaced
Fourier transform [11, 6, 23, 12, 18, 27, 19]. We write

z = e−ye2πix, y ∈ [0,∞), x ∈ [0, 1), (4.2)

and note that the summation (4.1) is a matrix vector multiplication with the matrix

C := A�K

where the Fourier matrix A is given by

A := (e2πiξkxj )j,k=1,...,N (4.3)

and the Laplace matrix K is given by (3.2). Of course, the symbol � denotes the Hadamard
(pointwise) product and we set ‖M‖1→∞ := sup{‖Mx‖∞ : ‖x‖1 = 1}. We have the
following result when approximating the factors as in the previous sections.

LEMMA 4.1. Let ε ∈ (0, 1) and the Fourier and the Laplace matrix be approximated by

‖A− Ã‖1→∞ ≤
ε

3
, ‖K − K̃‖1→∞ ≤

ε

3
,

then

‖A�K − Ã� K̃‖1→∞ ≤ ε.

Proof. The estimate simply follows from ‖A‖1→∞ = 1, ‖K̃‖1→∞ ≤ 1 + ε
3 , and

A�K − Ã� K̃ = A� (K − K̃) + (A− Ã)� K̃.

We use the hierarchical decomposition of the discrete Laplace transform and realize ma-
trix vector products with matrix blocks by the following technique.
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LEMMA 4.2. By slight abuse of notation, let K = LYKY,Ω
(
LΩ
)>

denote a single
matrix block of the Laplace matrix and A the associated block of the Fourier matrix, then

(A�K) f̂ =

(
LY �A

(
diag f̂

)
LΩ
(
KY,Ω

)>)
1,

where 1 := (1, . . . , 1)> ∈ Rq .

Proof. The simplest case is K = lY
(
lΩ
)>

from which aij · kij = lYi aij l
Ω
j and the

assertion follows. This implies the result since

K = LYKY,Ω
(
LΩ
)>

=

q∑
r=1

lYr

(
l̃
Y,Ω

r

)>
,

where lYr and l̃
Y,Ω

r denote the columns of LY and LΩ
(
KY,Ω

)>
, respectively.

THEOREM 4.3. Let N ∈ N, ε > 0, zj ∈ Z, j = 1, . . . , N , f̂ ∈ CN and f := Cf̂ with

C = (zkj )j,k=1,...,N

be given. Algorithm 2 takes O
(
N log 1

ε log2 N
ε

)
or O

(
N logN log 1

ε log3 N
ε

)
floating point

operations using the FFT for nonequispaced nodes in time and frequency [12] or the butterfly
sparse Fourier transform [19], respectively. Its output f̃ ∈ CN fulfills the error estimate
‖f − f̃‖∞ ≤ ε‖f̂‖1.

Proof. We start by noting that |zj | < ε implies |f(zj)| < ε‖f̂‖1 in (4.1), i.e., f(zj) can
be approximated by zero. We collect the associated nodes Z0 := {zj ∈ C : |zj | < ε} and set
the result f̃ ∈ CN , restricted to these nodes, to zero

f̃
Z0

:= 0.

Now write all nodes in polar form (4.2), where we can assume 0 ≤ yN ≤ . . . ≤ y1 ≤ log 1
ε

for the rest of the proof.
The decomposition of the frequency nodes and the spatial nodes in dyadic intervals Ω`,

Ym, `,m = 1, . . . ,M , cf. Definition 3.2, induces a decomposition of the unit disk Z into
concentric bands and a decomposition of the nodes {xj : j = 1, . . . , N} = ∪̇m=1,...,MXm,
Xm := {xj : yj ∈ Ym}. Accordingly, we denote restrictions of the Fourier matrix, the
Fourier coefficients, and the result vector by superscripts with these sets. In particular, spatial
nodes are close to one in modulus zj ∈ ZM if and only if yj ∈ YM and thus we set

f̃
ZM

:= Ã
XM ,[1,ξ1]

f̂ .

Here and subsequently, all multiplications with submatrices of A are realized by padding
zeros to the input vector, multiplying with A, and restricting to the desired results.

Regarding the most interesting part of the approximation, the decomposition from The-
orem A.3 yields

A� K̃ =

(
AXm,Ω` �LYmKYm,Ω`

(
LΩ`

)>)M−1,Lm

m=1,`=`m

.

For notational simplicity, we apply Lemma 4.2 to one block row m and two (artificial) block
columns ` = 0, 1, Ω := Ω0 ∪ Ω1, in(

AXm,Ω0 �LYmKYm,Ω0

(
LΩ0

)>
AXm,Ω1 �LYmKYm,Ω1

(
LΩ1

)>)
f̂

Ω
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=

(
LYm �AXm,Ω0

(
diag f̂

Ω0
)
LΩ0

(
KYm,Ω0

)>)
1

+

(
LYm �AXm,Ω1

(
diag f̂

Ω1
)
LΩ1

(
KYm,Ω1

)>)
1

=

LYm �AXm,Ω


(

diag f̂
Ω0
)
LΩ0

(
KYm,Ω0

)>(
diag f̂

Ω1
)
LΩ1

(
KYm,Ω1

)>

1.

Now, the error estimate is a straightforward consequence of Lemma 4.1.
The complexity estimate follows when considering the dominant computation in the sec-

ond last line F = . . . in Algorithm 2. We have M = O(log N
ε ) steps in the outer loop

and q = O(log 1
ε ) right hand sides for the multiplication with the approximate Fourier ma-

trix Ã, which computational needs are given by O(N logN log2 N
ε ) for the butterfly sparse

Fourier transform [19] or by O(N log N
ε ) floating point operations the so-called fast Fourier

transform for nonequispaced nodes in time and frequency (NNFFT), see [12]. Moreover, the
constant in the O-notation is improved for the special case ξk = k by means of the nonequi-
spaced fast Fourier transform (NFFT), see [18].

We note in passing that minor improvements in computational complexity are possible
by considering the butterfly approximation scheme directly on the blocks AXm,Ω. Lemma
4.2 shows how to apply the Hadamard product of a low rank matrix and a matrix that allows
for a fast algorithm to a vector. The very same idea is used in [26] for a polynomial conversion
matrix being a Hadamard product of a approximately low rank Hankel matrix and a Toeplitz
matrix which of course allows for fast multiplication by means of FFTs. Moreover note that
[1] suggests a fast algorithm for the multiplication with C when the nodes zj are close to
the unit circle. Regarding generalizations, we get a fast algorithm for the multiplication with
the adjoint matrix C∗ simply using the adjoint algorithms for the matrices K and A. In
particular, this allows to evaluate g : C→ C,

g(ξ) =

N∑
j=1

ĝjz
ξ
j

at nodes ξk ∈ [1, N ], k = 1, . . . , N , and for given zj ∈ Z = {z ∈ C : |z| ≤ 1} and
coefficients ĝj ∈ C efficiently. Possible applications include the fast evaluation of certain
special functions when approximated as in [7] on the real line. The most general case with
kernel

e(ξ+iη)(x+iy) = eξxe−byei(ηx+ξy)

allows for efficient treatment when (ξ, η) as well as (x, y) samples a smooth contour in C and
are in appropriate ranges. Then the last term leads to 2d sparse FFT [27, 19] and we might
apply the Hadamard product idea twice.

5. Numerical results. The implementation of Algorithm 1 and Algorithm 2 is realized
in MATLAB 2013a. We use one node of a Intel Xeon, 128GByte, 2.2GHz, Scientific Linux
release 6.5 (Carbon), for all numerical experiments. We draw random uniformly distributed
coefficients f̂k, equispaced frequencies ξk = k, k = 1, . . . , N , and we draw random nodes
xj ∈ [0, 1), j = 1, . . . , N and random nodes 0 ≤ yN ≤ yN−1 ≤ · · · ≤ y1 ≤ (2q − 1) log 2,
which ensures yj ∈ [0, log 1/ε].

We consider the relative error

E :=
‖f − f̃‖∞
‖f̂‖1

, (5.1)
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Algorithm 2 Evaluation of polynomials in the unit disk
Input :
ε ∈ (0, 1) . target accuracy
N ∈ N . number of sampling nodes
ξ1 > ξ2 · · · > ξN ≥ 1 . nodes in frequency domain
zj ∈ Z = {z ∈ C : |z| ≤ 1}, j = 1, . . . , N . nodes in spatial domain
f̂ ∈ CN . Fourier coefficients

Output :
f̃ ∈ CN , f̃ ≈ Cf̂ . samples in spatial domain

M =
⌈
log2

N log 1/ε
ε

⌉
+ 1 . number of decompositions

q = d 1
2 + log4 1/εe . approximation rank, Laplace transform

f̃
Z0

= 0

Ω = [1, ξ1]

f̃
ZM

= Ã
YM ,Ω

f̂

for ` = 1, . . . ,M − 1 do

F̂
Ω`

=
(

diag f̂
Ω`
)
LΩ` ∈ C|Ω`|×q

end for

for m = 1, . . . ,M − 1 do
Ω = ∪`>LmΩ`

f̃
Zm

= Ã
Xm,Ω

f̂
Ω

Ω = ∪Lm`=`mΩ`

F = Ã
Xm,Ω

(
F̂

Ω`
(
KYm,Ω`

)>)
`=`m,...,Lm

∈ C|Xm|×q

f̃
Zm

= f̃
Zm

+
(
LYm � F

)
1

end for

where f , f̃ ∈ CN denote the exact result and its approximation, respectively, see Theorem
A.3 and Theorem 4.3. Figure 5.1(a),(b),(c) shows the quantity E and the corresponding
upper bound in dependence of the approximation rank q = 1, . . . , 20 for a fixed bandwidth
N = 214. The error of Algorithm 1 is shown in Figure 5.1(a). The daggers represent the
numerical errors, the solid line the theoretical estimate, cf. Lemma A.1, and the dashed line a
least square fit E ≈ C0C

−q , C > 4.
Figure 5.1(b),(c) illustrates the error of Algorithm 2 using the butterfly fast Fourier trans-

form (BSFFT) and the nonequispaced fast Fourier transform (NFFT), respectively. The error
of Algorithm 2 in combination with the BSFFT can be estimated by Lemma 4.1 and [19,
Theorem 3.1], which supports the choice p = dq/2e + 3 for the approximation rank of the
BSFFT. Indeed, this leads to an upper bound C4−q for the total error which is however not
shown in Figure 5.1(b) since the theoretical constant C is way too large. Within Algorithm
2 in combination with the NFFT, we choose the Kaiser-Bessel window function, an approx-
imation parameter m = dq/3e, and an oversampling factor 2 for the NFFT, see [18]. This
results in a theoretical upper bound of the error as shown by the solid line in Figure 5.1(c).

In a second series of experiments, we compare the computational times, measured by the
9
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(a) Algorithm 1, total error.
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(b) Alg. 2 (BSFFT), total error.
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(c) Algorithm 2 (NFFT), total error.

FIG. 5.1. Approximation error (5.1) with respect to the local expansion degree q.

MATLAB functions tic and toc, of the naive evaluations and Algorithm 1 and 2 with re-
spect to increasing problem size N . Figure 5.2 shows the timings for the naive matrix vector
multiplication using entrywise and row-wise evaluations of the matrix, both shown as dia-
monds. Figure 5.2(a) present the computational times for Algorithm 1, i.e., the multiplication
with the matrix K. Clearly, the complexity is linear in the problem size. Figure 5.2(b) show
the same for Algorithm 2 using the BSFFT (symbol +) and the NFFT (∗). Both variants scale
almost linear in N but still, the constant in the BSFFT is much larger than in the NFFT case.
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(a) Algorithm 1, computational times, q = 8.
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(b) Algorithm 2, computational times, q = 8.

FIG. 5.2. Computational times for fixed approximation rank q = 8 with respect to the problem size N .

6. Summary. Recently, the butterfly approximation scheme and hierarchical approxi-
mations have been proposed for the efficient computation of integral transforms with oscilla-
tory and with asymptotically smooth kernels. In the first part of this paper, we summarized
and slightly improved the fast discrete Laplace transform [22]. We combined this Laplace
transform with a generalized fast Fourier transform in a purely algebraic fashion where we
used the decomposition of the Laplace transform explicitly and a small number of generalized
FFTs as black box. In particular, this allows for the fast evaluation of a polynomial, given by
its monomial coefficients, at many nodes in the complex unit disk. Alternatively, we might
interpret this as an FFT with nonequispaced nodes in the upper half plane. In this situation,
the butterfly Fourier transform could be replaced by the nonequispaced FFT which is both
asymptotically as well as with respect to actual computation times faster.

Appendix A. The following results for the exponential kernel are a simplification and
minor improvement of [22] and keep the paper self contained.

10



LEMMA A.1. [22, eq. (36)] Let q ∈ N, A,B ⊂ [0,∞) be admissible, and κ(y, ξ) =
e−ξy , then ∥∥κ− IA×Bq κ

∥∥
C(A×B)

≤ 21−2q.

Proof. For y > 0, we have the necessary condition for a local maximum of |∂qyκ(y, ξ)|,
i.e., ∣∣∂ξ∂qyκ(y, ξ)

∣∣ = ξq−1e−ξy |q − ξy| = 0

if and only if ξ = q/y. Using Stirling’s approximation, we conclude the globally valid bound

∣∣∂qyκ(y, ξ)
∣∣ = ξqe−ξy ≤ qq

eqyq
≤ 1√

2πq
q!y−q,

i.e., the exponential kernel is asymptotically smooth with constants C = 1/
√

2π, µ = 1,
s = 0, and ν = −1/2. The result follows from Theorem 3.1 since (2 + 2

π log q)/
√

2πq ≤ 1.

LEMMA A.2. [22, Sect. 4] Let ε, y1, ξ1 > 0 be given, use the notation of Definition 3.2
and Lemma A.1 and set q := d 1

2 + log4 1/εe,

`m := max(1, blog2(y1ξ1)−m− log2(log 1/ε)c+ 1), Lm := M −m (A.1)

for all m = 1, . . . ,M − 1, then
(i) y ∈ YM and ξ ∈ Ω (and analogously y ∈ Y and ξ ∈ ΩM ) implies 1− e−yξ ≤ ε,

(ii) y ∈ Ym, m = 1, . . . ,M − 1, and ξ ∈ Ωl, l < `m, implies e−yξ ≤ ε,
(iii) y ∈ Ym,m = 1, . . . ,M−1, and ξ ∈ Ωl,`m ≤ l ≤ Lm, implies

∣∣e−yξ − IYm×Ωl
q κ(y, ξ)

∣∣ ≤
ε,

(iv) y ∈ Ym, m = 1, . . . ,M − 1, and ξ ∈ Ωl, l > Lm, implies 1− e−yξ ≤ ε.
Proof. The individual estimates can be proven as follows. At first, let ξ ∈ [0, ξ1] and

y ∈ YM = [0, y1/2
M−1]. Using M ≥ log2

y1ξ1
ε + 1, we obtain 0 ≤ ξy ≤ y1ξ1/2

M−1 ≤ ε
and finally case i) since

1 ≥ e−yξ ≥ e−ε =

∞∑
k=0

(−ε)k

k!
≥ 1− ε.

Now let y ∈ Ym, ξ ∈ Ω`. The condition ` ≤ blog2(y1ξ1)−m− log2(log 1/ε)c implies

e−
y1ξ1
2m2` ≤ ε

and due to y ≥ y1
2m , ξ ≥ ξ1

2`
assertion ii). The third result follows from Lemma A.1 since the

intervals Ym, Ω`, `,m = 1, . . . ,M − 1, are admissible.
Finally, we have y ∈ Ym, ξ ∈ Ω`, `− 1 ≥ dlog2(ξ1y1) + log2(1/ε)e− (m− 1) and thus

1− e−yξ ≤ 1− e−
y1

2m−1
ξ1

2`−1 ≤ 1− e−ε ≤ ε.
11
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FIG. A.1. Kernel function and dyadic decomposition, the cases i),ii)) and iv) are shown in black and white,
respectively.

THEOREM A.3. [22, Sect. 7] Let N ∈ N, ε > 0, f̂ ∈ CN , y1 > y2 > . . . > yN > 0,
ξ1 > ξ2 > . . . > ξN > 0, and κ(y, ξ) := e−ξy be given. Set M :=

⌈
log2

y1ξ1
ε

⌉
+ 1,

q := d 1
2 + log4 1/εe, and f̃ = (f̃(yi))i=1,...,N for the function f̃ : Y → C,

f̃(y) =

{∑N
j=1 f̂j y ∈ YM ,∑Lm
`=`m

∑
ξj∈Ω`

f̂jIYm×Ω`κ(y, ξj) +
∑
`>Lm

∑
ξj∈Ω`

f̂j y ∈ Ym, 1 ≤ m < M.

(A.2)
Then the error estimate ‖f − f̃‖∞ ≤ ε‖f̂‖1 holds true.

Proof. We start with the error estimate. For y ∈ YM , Lemma A.2(i) implies

∣∣∣f(y)− f̃(y)
∣∣∣ ≤ N∑

k=1

|f̂k||e−ξky − 1| ≤ ε
N∑
k=1

|f̂k|.

Now let m = 1, . . . ,M − 1, y ∈ Ym, and partition the function f in three parts

f(y) =

(∑
`<`m

+

Lm∑
`=`m

+
∑
`>Lm

) ∑
ξj∈Ω`

f̂jκ(y, ξj).

The desired result follows by the application of Lemma A.2ii)-iv) and the approximation of
the kernel κ by zero, by interpolation, or by one, respectively.
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